Thirty Gallon Robot, Navigation Component Team FEAT

Client: Michael E Leverington Mentor: Rudhira Talla Team Members: Jacob Doyle, Armando Martinez, Luke Domby, Aiden Halili, Vincent Machado

Robots in Academia

- Not well funded and not affordable
- Toolset is not wide enough
 - Proprietary software and hardware
- Difficult to implement, compatibility wise

Michael Leverington

- Educator at heart
- Longtime developmental goal with this project
- Access to numerous resources
 - Create 3 robot by the Roomba creators
 - Multiple sensors and actuators
- Working to further the educational opportunities in Computer Science

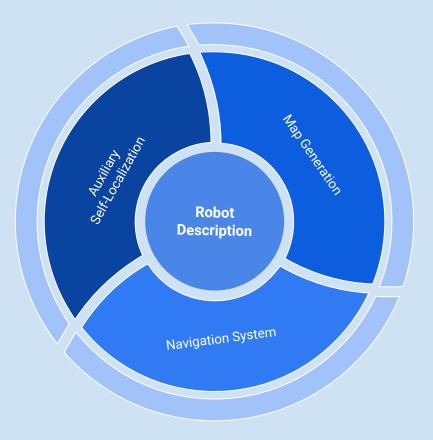
Available Resources

- In the some of the past attempts previous groups lacked a functional robot
- Other groups had a homemade robot that has since broken down
- We have access to the Create 3 as opposed to a homemade platform

Problem Statement

- Combine sensors and actuators from a robot to demonstrate a self localizing navigation system
 - Must be modular and robust
- Prove to be modular with other sensors/actuators and environments
- Provide a simple program that guides a tour through a building

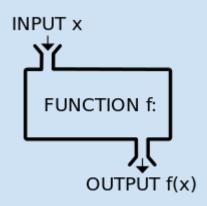
Self-Awareness + Modularity + Practicality

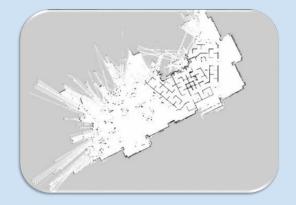

Solution Overview

- Using a required robotics operating system (ROS2), develop mapping functions, mobility, safety, and self localization functionality
- Compatible with differing sensor types
 - Actuators will depend on odometry accuracy
- Programmable with dependency on navigational components

EROS

Key Requirements

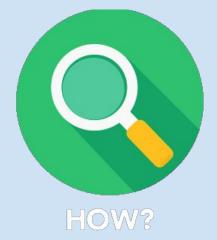

- Robot Description
- Map Generation
- Navigation System
- Auxiliary Triangulation



Functional Requirements

Map Generation:

- Robot will be able to map the entire floor:
 - A coastal navigation function used to draw a map of the floor
 - A function that will read sensor input



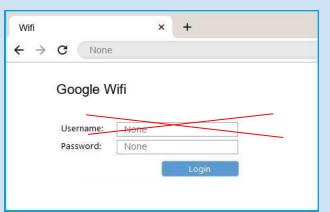
Performance Requirements

Navigation System:

- Generating the route in which the robot will take is dependent on user input of coordinates.

Environmental Requirements

Auxiliary Self-Localization:


- For the purposes of this project, we are going to limit our scope to the list of routers available at NAU.



mac':	'1C:E6:C7:F0:EB:AE
{'mac':	'1C:E6:C7:E0:C2:C0'.
{'mac':	'1C:E6:C7:F1:48:61',
{'mac':	'1C:E6:C7:E1:3B:61',
{'mac':	'30:E1:71:A0:9B:4D',
{'mac':	'D6:6A:6A:8E:16:6F',
{'mac':	'FA:DA:0C:7E:CD:D1',
{'mac':	'1C:E6:C7:F0:EB:A0',
{'mac':	'1C:E6:C7:F0:EB:A2',
{'mac':	'1C:E6:C7:F0:EB:A1',
{'mac':	'1C:E6:C7:F0:D6:42',
{'mac':	'1C:E6:C7:E1:47:2F',
{'mac':	'1C:E6:C7:E1:47:2D',
{'mac':	'1C:E6:C7:E1:47:2E',
{'mac':	'24:01:C7:15:FF:AF',
{'mac':	'24:01:C7:15:FF:AD',
{'mac':	'24:01:C7:15:FF:AE',
{'mac':	'1C:E6:C7:F0:EB:AF',
{'mac':	'1C:E6:C7:F0:EB:AD',
{'mac':	'58:97:1E:57:61:5E',
{'mac':	'1C:E6:C7:E1:3B:6E',
{'mac':	'18:33:9D:71:5F:BF',
{'mac':	'18:33:9D:71:5F:BE',
{'mac':	'58:97:1E:57:0B:3F',
{'mac':	'58:97:1E:57:0B:3D',
{'mac':	'58:97:1E:57:0B:3E',
{'mac':	'1C:E6:C7:F0:D6:4F',
{'mac':	'1C:E6:C7:F0:D6:4D'.
{'mac':	'1C:E6:C7:F0:D6:4E',
{'mac':	'58:97:1E:57:06:9F',
{'mac':	'58:97:1E:57:06:9D',
('mac':	'58:97:1E:57:06:9E'
-	

Risks and Feasibility

- Sensor compatibility
 - Lidar input greatly differs from our standard IR sensors
- Odometry dependant
- Technical issues with wifi connection abilities
- Size and mobility differences between robots

Lidar

Project Organization

- Client Meetings
 - Thursdays: 4:00 PM 5:00 PM
- Mentor Meetings
 - Thursdays: 5:00 PM 6:00 PM
- Team Meetings
 - Thursdays: 6:00 PM 7:00 PM

A floor-explorer / 30-gallon-robot Private

Group 7: Capstone Project

Schedule

- Guarantee robots safety mechanisms
- Implement basic functions with mobility and environmental awareness
- Map generation
- Object avoidance
- Self-localization mechanisms
- Program a tour and show proof of concept!

Development Schedule	1/17	1/23	1/30	2/6	2/13	2/20	2/27	3/6	3/13	3/20	3/27	4/3	4/10	4/17	4/24	5/1
Self Navigation Development																
Implementation and Bug Hunting																
Digital Map Creation		_														
Implementation and Bug Hunting																
Obstacle Avoidance						-										
Implementation and Bug Hunting																
Wifi Self-Localization																
Implementation and Bug Hunting																

Conclusion

- Our robotics software has the potential to greatly improve academia in this industry
- We can mainstream a baseline for an affordable navigation software to anyone
- All while avoiding the proprietary hindrances that comes with patented software

